In collaboration with Payame Noor University and Iranian Biology Society

Document Type : Original Article

Authors

1 Department of Biology, Payame ‎Noor University, Tehran, Iran‎

2 Department of Statistics, Payame ‎Noor University, Tehran, Iran

Abstract

Background: The membrane-bound sorbitol dehydrogenase is a member of the flavoprotein dehydrogenase–cytochrome complex located in the respiratory chain of the genus of Gluconobacter oxidizes D-sorbitol to L-sorbose, the vitamin C intermediate production, with high specificity. In this research, the silver nanoparticles effect on L-sorbose production and the sorbitol dehydrogenase activity by Gluconobacter oxydans were investigated through response surface methodology.
Methods: The silver nanoparticles effect on L-sorbose production was studied in a 2.5 L laboratory-scale bioreactor. The central composite design was employed for evaluation of the silver nanoparticles effect on sorbitol dehydrogenase activity at different pH and temperatures. The sorbitol dehydrogenase of Gluconobacter oxydans activity was evaluated in the membrane fractions by colorimetric method.
Results: The results showed that the addition of 50 mg/L of silver nanoparticles into the culture medium caused a decrease of 2.3 and 1.7 times in L-sorbose production and dry cell weight, respectively. Studying the sorbitol dehydrogenase activity through response surface methodology showed that the highest and lowest activity were observed when 0 and 100 mg/L of silver nanoparticles were added into the culture medium, respectively (35 and 1.5 U/L). The temperature and pH showed a direct effect on the sorbitol dehydrogenase. The effects of the three parameters of temperature, pH, and nanoparticle concentration were linear. The parameters of temperature and silver nanoparticles concentrations showed a positive interaction.
Conclusion: It could be concluded that silver nanoparticles decreased the L-sorbose production by Gluconobacter oxydans through inhibiting the membrane-bound sorbitol dehydrogenase activity and cell growth.

Keywords

Main Subjects

Adachi, O., & Yakushi, T. (2016). Membrane-bound dehydrogenases of acetic acid bacteria. In: Matsushita K, Toyama H, Tonouchi N, Okamoto-Kainuma A (eds) Acetic Acid Bacteria. Springer press., pp. 273.
Alam, F., Laskar, A.A., Zubair, M., Baig, U., & Younus, H. (2015). Immobilization of yeast alcohol dehydrogenase on polyaniline coated silver nanoparticles formed by green synthesis. Journal of Molecular Catalysis B: Enzymatic, 119, 78-84. https://doi.org/10.1016/j.molcatb.2015.06.004
Alamdar, N., Rasekh, B., & Yazdian, F. (2019). The effect of Nanoparticles on the Biosurfactant production by Pseudomonas aeruginosa for Use in the Oil Industry. Modares Journal of Biotechnology, 10, 223-229.
Assarsson, A., Nasir, I., Lundqvist, M., & Cabaleiro-Lago, C. (2016). Kinetic and thermodynamic study of the interactions between human carbonic anhydrase variants and polystyrene nanoparticles of different size. RSC Advances, 6, 35868-35874.
Barbalinardo, M., Caicci, F., Cavallini, M., & Gentili, D. (2018). Protein Corona Mediated Uptake and Cytotoxicity of Silver Nanoparticles in Mouse Embryonic Fibroblast. Small. 14,e1801219. [PMID: 30058105 DOI: 10.1002/smll.201801219
Bringer, S., & Bott, M. (2016). Central Carbon Metabolism and Respiration in Gluconobacter oxydans. In: Matsushita K, Toyama H, Tonouchi N, Okamoto-Kainuma A (eds) Acetic Acid Bacteria: Ecology & Physiology. Springer press., pp. 294.
Cabaleiro-Lago, C., & Lundqvist, M. (2020). The Effect of Nanoparticles on the Structure and Enzymatic Activity of Human Carbonic Anhydrase I and II. Molecules, 25(19), 4405. doi: 10.3390/molecules25194405. PMID: 32992797; PMCID: PMC7582742.
Calzolai, L. Franchini, F., Gilliland, D., & Rossi, F. (2010). Protein--nanoparticle interaction: identification of the ubiquitin--gold nanoparticle interaction site. Nano Letters,10(8), 3101-5. doi: 10.1021/nl101746v. PMID: 20698623.
Cameron, S.J., Hosseinian, F., & Willmore, W.G. (2018). A current overview of the biological and cellular effects of nanosilver. International Journal of Molecular Science, 19, 2030.
Cha, S.H., Hong, J., McGuffie., M., Yeom, B., VanEpps, J.S., & Kotov, N.A. (2015). Shape-Dependent Biomimetic Inhibition of Enzyme by Nanoparticles and Their Antibacterial Activity. ACS Nano, 9, 9097-9105. DOI: 10.1021/acsnano.5b03247
Hajipour, M.J., Fromm, K.M., Ashkarran, A.A., Jimenez de Aberasturi, D., de Larramendi, I.R., Rojo, T., Serpooshan, V., Parak, W.J., & Mahmoudi, M. (2012). Antibacterial properties of nanoparticles. Trend in Biotechnology, 30(10), 499-511. doi: 10.1016/j.tibtech.2012.06.004.
Hu, Y., Wan, H., Li, J., & Zhou, J. (2015). Enhanced production of L-sorbose in an industrial Gluconobacter oxydans strain by identification of a strong promoter based on proteomics analysis. Journal of Industrial Microbiology and Biotechnology, 42(7), 1039–1047, https://doi.org/10.1007/s10295-015-1624-7
Jalili Tabaii, M., Emtiazi, G. (2018). The effect of nanoparticles and organic acids on bacterial nano-cellulose synthesis, crystalline structure and water holding capacity. Microbiology, Metabolites and Biotechnology, 1(1), 1-11. doi: 10.22104/armmt.2017.2321.1004
Jiang, H.S., Zhang, Y., Lu, Z., Lebrun, R., & Gontero, B. (2019). Interaction between Silver Nanoparticles and Two Dehydrogenases: Role of Thiol Groups. Small, 15(27), 1900860. 10.1002/smll.201900860
Kakinen, A., Ding, F., Chen, P., Mortimer, M., Kahru, A., & Ke, P.C. (2013). Interaction of firefly luciferase and silver nanoparticles and its impact on enzyme activity. Nanotechnology, 24(34), 345101
Kim, T. S., Patel, S. K., Selvaraj, C., Jung, W. S., Pan, C. H., Kang, Y. C., & Lee, J. K. (2016). A highly efficient sorbitol dehydrogenase from Gluconobacter oxydans G624 and improvement of its stability through immobilization. Scientific reports6(1), 1-11.
Li, A., Lin. J., Huang. Z., Wang. X., & Guo, L. (2018). Surface-Enhanced Raman Spectroscopy on Amorphous Semiconducting Rhodium Sulfide Microbowl Substrates. Science, 21(10), 1-10. doi: 10.1016/j.isci.2018.11.017. Epub 2018 Nov 13. PMID: 30496971; PMCID: PMC6260454.
Li, G.Y., Huang, K.L., Jiang, Y.R., Yang, D.L., & Ding, P. (2008). Preparation and characterization of Saccharomyces cerevisiae alcohol dehydrogenase immobilized on magnetic nanoparticles. International Journal of Biological Macromolecules, 42(5), 405-12. doi: 10.1016/j.ijbiomac.2008.01.005. Epub Feb 2. PMID: 18456317.
Mahmoudi, M., Bertrand, N., Zope, H., & Farokhzad, O.C. (2016). Emerging understanding of the protein corona at the nano-bio interfaces. Nano Today, 11, 817–832. doi: 10.1016/j.nantod.2016.10.005
Moghadami, F., & Hosseini, R. (2020). Effect of iron and silver nanoparticles on coenzyme Q10 production by Gluconobacter japonicus FM10. Iranian Journal of Microbiology, 12(6), 592-600. doi: 10.18502/ijm.v12i6.5034. PMID: 33613914; PMCID: PMC7884265.
Moghadami, F., Fooladi, J., Hosseini, R., & Kalantari, M. (2021). Optimization of coenzyme Q10 production by Gluconobacter japonicus FM10 using response surface methodology. Journal of Applied Biotechnology Reports, 8(2), 172- 179
Moghadami, F., Hajmoradi, F., & Kalantari, M. (2023). Investigating the effect of silver nanoparticles on the activity of glycerol dehydrogenase by response surface methodology. Genetic Engineering and Biosafety Journal. 12(1)
Nel, A.E., Madler, L., Velegol, D., Xia, T., Hoek, E.M., Somasundaran, P., Klaessig, F., Castranova, V., & Thompson, M. (2009). Understanding biophysicochemical interactions at the nano-bio interface. Nature Materials, 9(5), 212-220
Patra, I., Huy, D.T.N., & Alsaikhan, F. (2022). Toxic effects on enzymatic activity, gene expression and histopathological biomarkers in organisms exposed to microplastics and nanoplastics: a review. Environmental Sciences Europe, 34, 80.  https://doi.org/10.1186/s12302-022-00652-w
Porzani, S.J., Lorenzi, A.S., Eghtedari, M., & Nowruzi, B. (2021). Interaction of Dehydrogenase Enzymes with Nanoparticles in Industrial and Medical Applications, and the Associated Challenges: A Mini-review. Mini-Reviews in Medicinal Chemistry, 21(11), 1351-1366. doi: 10.2174/1570193X17666201119152944. PMID: 33213343.
Shinagawa, E., Matsushita, K., Adachi, O., & Ameyama, M. (1982). Purification and characterization of D-sorbitol dehydrogenase from membrane of Gluconobacter suboxydans var. alpha. Agriculture Biological Chemistry, 46(1), 135-141.
Silva, G.A.R., Oliveira, S.S.S., Lima, S.F., do Nascimento, R.P., Baptista, A.R.S., & Fiaux, S.B. (2022). The industrial versatility of Gluconobacter oxydans: current applications and future perspectives. World Journal of Microbiology and Biotechnology, 38(8), 134. doi: 10.1007/s11274-022-03310-8. PMID: 35688964; PMCID: PMC9187504.
Soemophol, W., Adachi, O., Matsushita, K., & Toyama, H. (2008). Distinct Physiological Roles of Two Membrane-Bound Dehydrogenases Responsible for D-Sorbitol Oxidation in Gluconobacter frateurii. Bioscience Biotechnology Biochemistry, 72 (3), 842-850.
Srivastava, M., Singh, S., & Self, W.T. (2012). Exposure to silver nanoparticles inhibits selenoprotein synthesis and the activity of thioredoxin reductase. Environmental Health Perspectives, 120(1), 56-61. doi: 10.1289/ehp.1103928. Epub 2011 Sep 30. PMID: 21965219; PMCID: PMC3261948.
Sushigawa, T., & Hoshino, T. (2002). Purification and properties of membrane-bound D-sorbitol dehydrogenase from Gluconobacter suboxydans IFO 3255. Bioscience Biotechnology Biochemistry, 66, 57-64.
Toyama, H., Soemphol, W., Moonmangmee, D., Adachi, O., & Matsushita, K. (2005). Molecular properties of membrane-bound FAD-containing D-sorbitol dehydrogenase from thermotolerant Gluconobacter frateurii isolated from Thailand. Bioscience Biotechnology Biochemistry, 69, 1120-1129
Wang, Y., Tao, F., & Xu, P. (2014). Glycerol dehydrogenase plays a dual role in glycerol metabolism and 2,3-butanediol formation in Klebsiella pneumoniae. Journal of Biological Chemistry, 289(9), 6080-90. doi: 10.1074/jbc.M113.525535. Epub 2014 Jan 15. PMID: 24429283; PMCID: PMC3937674.
Wu, Z., Zhang, B., & Yan, B. (2009). Regulation of enzyme activity through interactions with nanoparticles. International Journal of Molecular Sciences, 10(10), 4198-4209. doi: 10.3390/ijms10104198. PMID: 20057940; PMCID: PMC2790103
Xia, X.R., Monteiro-Riviere, N.A., Mathur, S., Song, X., Xiao, L., Oldenberg, S.J., Fadeel, B., & Riviere, J.E. (2011). Mapping the Surface Adsorption Forces of Nanomaterials in Biological Systems. ACS Nano, 5, 9074.