Spring (2025) 1(1): 33-44

ORIGINAL ARTICLE

Investigating the relationship between three sections of Cousinia using macroscopic and microscopic characters

Amir Abbas Minaeifar^(ORCID: 0000000293711498)

Department of biology, Payamenoor University, Tehran, Iran.

Correspondence: Amir Abbas Minaeifar Email: aaminaeifar@pnu.ac.ir

Received: 13/Jun/2023 Accepted: 13/Nov/2023

How to cite:

Minaeifar, A. A. (2025). Investigating the relationship between three sections of Cousinia using macroscopic and microscopic characters. *Acta Cell Biologica*, 1 (1), 33-44.

ABSTRACT

Cousinia is the one of largest genera in Asteraceae family, after *Astragalus, Cousinia* is the largest genus, with over than 270 species and 43 sections in Iran. Morphological studies and micromorphological studies of the leaf characters were performed in 31 species of the genus *Cousinia* (sections *Albidae, Cousinia* and *Stenocephalae*) growing in Iran. In total 17 morphological characters and 11 micro-morphological characters of the leaf epidermises were scored. UPGMA clustering and PCA ordination based on morphological characters almost separated the three sections. However, the same analyses based on micro-morphological characters did not completely agree with morphological results. Combined analyses of micro and morphological characters suggest that *C. chlorocephala* has closer affinity with the section *Stenocephalae*. It seems use of both micro-morphological result data analysis. According to the results of the relationship of the species using the total characteristics of the grouping of this taxon, it needs to be revised again and molecular studies in this field are needed for more certainty.

KEYWORDS *Cousinia*, Asteraceae, SEM, Leaf.

Copyright © 2025 The Authors. Published by Payame Noor University. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International license (<u>https://creativecommons.org/licenses/by/4.0/</u>). Non-commercial uses of the work are permitted, provided the original work is properly cited.

1. Introduction

Cousinia Cass. Is one of the largest genera (after Senecio and Vernonia) in the Asteraceae. (Frodin 2004, Rechinger 1986, Susanna & Garcia-Jacas 2007). It contains 600 to 700 species in Southwest and Central Asia. The generic distribution area of Cousinia is nearly identical to the Irano-Turanian region (Knapp 1987). Further, the modern geographical range of Cousinia correlates almost perfectly with the Irano-Turanian floristic region (Figure 1) (Djamali et al., 2012). The overall number of Cousinia sections and species is difficult to estimate. However, a careful comparison of the systems of Rechinger (1986) and Tscherneva (1962) leads to an approximate number of 630 species in 70 sections.

In Iran, after *Astragalus*, *Cousinia* is the largest genus, with over 270 species and 43 sections. *Cousinia* species are distributed in mountainous parts of Iran, especially in Zagros and Alborz ranges. Iran is well known for its high diversity in flowering plant flora, with the total number of 8000 species, of which 1800 are endemic (Ghahreman and Attar 1999). This is also reflected by the species richness in the genus *Cousinia*.

There are several morphological, cytogenetical, and molecular studies on some *Cousinia* species (Attar 2011, Djavadi 2012, López-Vinyallonga *et al.*, 2010, 2011, Sheidai *et al.*, 2006, Susanna *et al.*, 2003). However, we found no report on a micromorphological investigation of leaf characters in the *Cousinia* species of the country.

The leaf epidermis is often a useful character for the classification and identification of taxa such as *Salix* (Chen *et al.*, 2008; Ghahremaninejad *et al.*, 2012), *Malus* (Ganeva and Uzunova, 2010), *Sibbaldia* (Tahir and Rajput, 2009) and *Rosa* (Wissemann, 2000), and on some genus of Asteraceae (Adedeji and Jewoola 2008).

To the best of our knowledge, no studies have been conducted on leaf epidermal

characters of Cousinia. Hence, the current study aims to provide new insights by examining leaf epidermal traits in 31 species within the Cousinia genus. The primary objective is to analyze species relationships using the generated epidermal data. Additionally, a comparison will be drawn between the derived species groups and those resulting from morphometric analyses.

2. Material and methods

Morphological studies were performed on 31 species of *Cousinia* from 3 sections namely: Section *Albidae* (3 species), Section *Cousinia* (8 Species), and Section *Stenocephalae* (20 Species). The voucher specimens have been deposited in Tehran University Herbariums (TUH, Table 1). In total 17 morphological characters including 10 quantitative and 8 qualitative characters were studied (Table 2). These were selected based on the species description available in Flora Iranica (Rechinger 1986), as well as our observations.

In micro-morphological studies, we used stem leaves and considered the abaxial surface of leaves after removing trichomes. Furthermore, dried leaves were mounted on stubs using double-sided adhesive tape. Samples were coated with 12.5–15 nm of gold. Subsequently, the coated leaves were examined and photographed with Cam Scan KYKY-EM3200 Electron Microscope.

In total 11 leaves micro-morphological characters were studied, including 8 quantitative and 3 qualitative characters (Table 3). Data were standardized (mean =0. Variance=1) and used for clustering. Grouping of the species was done by using UPGMA (unweighted paired group using average) clustering method as well as PCA ordination (Podani 2000). Principal components analysis (PCA) was used to identify the most variable morphological and leaf micro-morphological characters. For statistical analysis, we used PAST (2001) software.

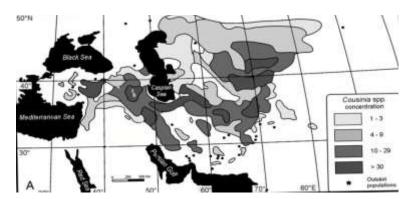


Figure 1. Map showing the distribution of Cousinia species richness (After Knapp 1987).

Table1. Cousinia species studied and their locations and voucher number
--

R	Taxa	Section	Locality	Abbreviation
1	Cousinia bachtiarica	Albidae	Lorestan, sepiddasht	bch
2 3	C. eriorhiza	Albidae	Hamedan, Assadabad	erz
3	C. oligocephala	Albidae	Kohkylouy-e-boyerahmad, Sisakht	olg
4	C. chlorocephala	Cousinia	West Azarbaijan, Khoy	clo
5	C. hamosa	Cousinia	West azarbaijan, Ziveh	ham
6	C. microcephala	Cousinia	East Azarbaijan, Sharafkhane	mic
7	C. seidlitzii	Cousinia	West Azarbaijan, Mahabad	sed
8	C. tabrisiana	Cousinia	West Azarbaijan, Valadian	tab
9	C .tenuifolia	Cousinia	West Azarbaijan, Bazargan	ten
10	C. urumiensis	Cousinia	Kurdestan, Divandareh	urm
11	C. wilhelminae	Cousinia	West Azarbaijan, Marand	wil
12	C. aggregata	Stenocephalae	Tehran, Bibishahrbanu	agr
13	C. alexeenkoana	Stenocephalae	Tehran, Firuzkuh	alx
14	C. assyriaca	Stenocephalae	Lorestan, Gilavand	asy
15	C. bijarensis	Stenocephalae	Kurdestan, Dolatabad	bij
16	C. commutata	Stenocephalae	Mazandaran, Kandovan	com
17	C. cylindracea	Stenocephalae	Chaharmahal and Bakhtiari, Lordegan	cyl
18	C. esfandiarii	Stenocephalae	Khorasan, Bojnurd	esf
19	C. gaubae	Stenocephalae	Alborz, chalus	gub
20	C. gilanica	Stenocephalae	Gilan, masouleh	gil
21	C. glaucopsis	Stenocephalae	Tehran, Firuzkuh	glp
22	C. hypopolia	Stenocephalae	Khorasan, Bojnurd	hyp
23	C. lucida	Stenocephalae	Lorestan, Azna	luc
24	C. manouchehrii	Stenocephalae	Esfahan, Ghamsar	man
25	C. nekarmanica	Stenocephalae	Semnan, Shahrod	nek
26	C. prasina	Stenocephalae	Gilan, Loushan	prs
27	C. renominata	Stenocephalae	Khorasan, chenaran	ren
28	C. stenocephala	Stenocephalae	Kermanshah, Gilane gharb	stn
29	C. tenuiramula	Stenocephalae	Chaharmahal and Bakhtiari, Borujen	teu
30	C. thamnodes	Stenocephalae	Esfahan, Ferydonshahr	tam
31	C. wendelboi	Stenocephalae	Mazandaran, Panjab	wen

 Table 2. Morphological characters

R	Character
1	Head number

- 2 3 4 5 6 7 Head length
- Head wide
- Head length/ head wide ratio
- Bract number
- Floret number
- Floret length
- 8 9 10 Limb length
- Tube length
- Limb length / tube length ratio
- Stem trichome (0:Glabrous; 1:Low density Arachnoid; 2: Medium density Arachnoid; 3: High density Arachnoid) Leaves color (0: one color; 1: bicolor) Head shape (0:short ovate; 1:ovate; 2:cylindrical) 11
- 12 13
- Head trichome (0:Glabrous; 1:Low density; 2: Medium density; 3: High density) Bract shape (0: Imbricate; 1: Erect; 2: Spreading; 3: Curved) 14
- 15
- Floret color (0: yellow; 1: pink; 2: purple) Anther color (0: yellow; 1: pink) 16 17

3. Results and Discussion

UPGMA dendrogram of morphological characters placed representative species of the three sections in separate clusters (Figure 2). Species of the section *Cousinia* were placed in two separate sub-clusters. *C. tabrisiana, C. microcephala, C. seidlitzii* and *C. urumiensis* showed a higher degree of morphological similarity and formed the first sub-cluster, while the other species studied from this section formed the second sub-cluster.

The species studied from section *Stenocephalae* formed three sub-clusters. *C. bijarensis, C. prasina, C. assyriaca, C. thamnodes, C. tenuiramula* and *C. gaubae* comprised the firs sub-cluster. The members of this sub-cluster also showed some similarity to the species of section *Cousinia* and were placed close to them.

C. stenocephalae, C. renominata, C.

esfandiarii, *C. hypopolia*, *C. gilanica*, *C. commutata* and *C. wendelboi* of section *Stenocephalae*, formed the second subcluster, while the other studied species of this section formed the third sub-cluster.

Three studied species of the section *Albidae* were placed in a separate cluster, with *C. oligocephala* and *C. bachtiarica* showing a higher degree of morphological similarity.

PCA plot of morphological characters (Figure 3) produced very similar groupings of the studied species, separating section *Albidae* from the other sections. PCA plot also separated the studied species of section *Stenocephalae* into three groups supporting the UPGMA dendrogram result. However, the PCA plot showed some degree of morphological overlap between some species of sections *Cousinia* and *Stenocephalae*.

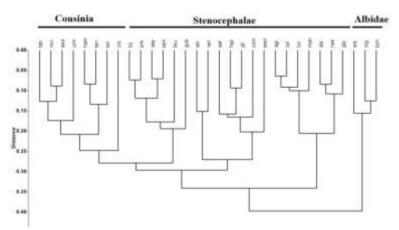


Figure 2. UPGMA tree of morphological data three section of Cousinia studied

Figure 3. PCA plot of morphological data of three section of Cousinia studied

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	⁹⁾ 1.6		10 1		12
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	⁹⁾ 1.6	3			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	⁹⁾ 1.6		1 1	2	2
22(30,9+3,45) 17 5(19 32+1 22) 11(14 65+2 24) 37(59 29+15 02) 13 5(22 67+4)	7) 2.6	4	1 1		
C. oligocephala 145 36 22.3 1.59 19.5(19.52±1.22) 19.5(19.52±1.22) 19.5(22.07±4.)		51	1 1	2	2
Sect. Cousinia					
$ \begin{array}{c} \hline C. \ chlorocephala \ 217.64 \\ \hline 31.5 \\ \hline 31.5 \\ \hline 27 \\ \hline 1.30 \\ \hline 1.30 \\ \hline 16.3 \\ \hline 7(14.9\pm 1.99) \\ \hline 16.3 \\ \hline 77.8 \\ \hline 24.6 \\ \hline 77.8 \\ \hline 24.6 \\ \hline \end{array} $	⁹⁾ 2.6	8	0 2	2	2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7) 2.3	2	1 (0	1
$\hline C.\ microcephala\ \ 218.82\ \ {}^{20.5(29.97\pm3.83)}_{36.7}\ \ \ 12.3(22.85\pm2.98)_{27}\ \ 1.31\ \ {}^{6.7(11.46\pm2.37)}_{15.9}\ \ {}^{18(34.01\pm7.62)}_{49.4}\ \ {}^{9.9(15.91\pm3.2)}_{21}$	2.1	3	1 (0	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.3	2	1	0	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.2	4	1	0	2
$ \underbrace{C.tenuifolia}_{290} \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.3	3	1	0	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.2	8	1	0	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	⁽⁵⁾ 1.9	5	1	1	2
Sect. Stenocephalae					
$ \begin{array}{c} \text{Sct. Steholephate} \\ \hline C. aggregata \\ 182 \\ \hline 19(29.95\pm3.88) \\ 36.7 \\ 36.7 \\ 28.7 \\ 1.33 \\ \hline 1.33 \\ 1.33$		6	1	1	2
$ \underbrace{ \begin{array}{c} \textit{C. Alexeenkoana \ 124.95 \ } 25.6(34.37 \pm 4.44) \\ 45 \\ 35 \\ 1.35 \\$	2.1	9	1	1	1
$ \begin{array}{c} C. assyriaca \\ \hline 219.3 \\ \hline 31.5 \\ \hline 31.5 \\ \hline 24.5 \\ \hline 24.5 \\ \hline 24.5 \\ \hline 1.25 \\ \hline 5(13.5\pm2.37)15.2 \\ \hline 24(39.94\pm10.04) \\ \hline 63 \\ \hline 29.9 \\ \hline 63 \\ \hline 29.9 \\ \hline 5(10.5\pm2.37)15.2 \\ \hline 63 \\ \hline 29.9 \\ \hline 5(10.5\pm2.37)15.2 \\ \hline 63 \\ \hline 29.9 \\ \hline 5(10.5\pm2.37)15.2 \\ \hline 63 \\ \hline 63 \\ \hline 29.9 \\ \hline 5(10.5\pm2.37)15.2 \\ \hline 63 \\ \hline 63$	1.8	1	0 2	2	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.7	3	1 1	2	2
$ \begin{array}{c} \hline C. \ commutata \\ \hline 132.6 \\ \hline 22(26.99\pm3.45) \\ \hline 34 \\ \hline 16(19.75\pm2.80)25.4 \\ \hline 1.36 \\ \hline 14 \\ \hline 14 \\ \hline 68.3 \\ \hline 32 \\ \hline 24.7(115\pm2.20) \\ \hline 10.5(22.47\pm0.11) \\ \hline 7.5(10.92\pm1.66) \\ \hline 18(47.5\pm9.99) \\ \hline 8.6(15.58\pm4.8) \\ \hline 32 \\ \hline 10.5(22.47\pm0.11) \\ \hline 7.5(10.92\pm1.66) \\ \hline 14 \\ \hline 68.3 \\ \hline 32 \\ \hline 11.2(10.10\pm1.66) \\ \hline 11.2(10.$	3.0	2	1	1	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.5	3	1 1	2	1
	2.4	5	1	0	0
$ \underbrace{C. \ Gaubae} \qquad \underbrace{394.1}_{31} \underbrace{15(23.33\pm 3.69)}_{23.4} \underbrace{13(17.97\pm 2.51)}_{1.29} \underbrace{1.29}_{14.8} \underbrace{16(22.33\pm 3.22)}_{14.8} \underbrace{11(16.92\pm 3.50)}_{29.7} \underbrace{11(16.92\pm 3.50)}_{23.4} \underbrace{14.8}_{29.7} \underbrace{14.8}_{29.7} \underbrace{11(16.92\pm 3.50)}_{23.4} 11(16.92\pm 3.50)$	1.5	2	1	1	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.9	3	1	1	1
$ \underbrace{C. \ glaucopsis}_{61.3} 163.5 \begin{array}{c} \underline{24.9}(32.8 \pm 3.34) \\ \underline{36.7} \\ \underline{27.8} \end{array} \begin{array}{c} 1.37 \ 12.3(16.1 \pm 2.44) 18.9 \\ \underline{61.3} \\ 37.2 \end{array} \begin{array}{c} \underline{26}(44.2 \pm 9.16) \\ \underline{61.3} \\ 37.2 \end{array} $	· 2.2	6	1 1	2	1
	2.4		0		0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		8	1	1	0
	5.2	4	1 1	2	1
$ \begin{array}{c} C. \ nekarmanica \\ 109.9 \\ \begin{array}{c} 16.1(31.43\pm5.72) \\ 40 \\ \end{array} \begin{array}{c} 16(23.34\pm4.09) \\ 30.1 \\ \end{array} \begin{array}{c} 1.34 \\ 22 \\ \end{array} \begin{array}{c} 10.1(15.69\pm3.14) \\ 22 \\ \end{array} \begin{array}{c} 32(46.1\pm9.87) \\ 72.5 \\ \end{array} \begin{array}{c} 14(21.1\pm6.84) \\ 40 \\ \end{array} \end{array} $	2.1	9	1 1	2	1
$ \begin{array}{c} C. \ prasina \\ \hline 118.82 & \frac{28.1(34.79\pm3.01)}{40.3} & \frac{20(22.56\pm2.14)}{29} & 1.54 \\ \hline 8(14.46\pm3.43) & \frac{12.5(43.42\pm10.36)}{60} & \frac{9.8(18.49\pm5.23)}{35} \\ \hline 8(14.46\pm3.43) & \frac{12.5(43.42\pm10.36)}{60} & \frac{9.8(14.46\pm3.43)}{35} \\ \hline 8(14.46\pm3.43) & \frac{12.5(43.42\pm10.36)}{60} & \frac{9.8(14.42\pm10.36)}{52} \\ \hline 8(14.46\pm3.43) & \frac{12.5(43.42\pm10.36)}{60} & \frac{12.5(43.42\pm10.36)}{52} \\ \hline 8(14.45\pm10.36) & \frac{12.5(43.42\pm10.36)}{52} & \frac{12.5(43.42\pm10.36)}{52} \\ \hline 8(14.45\pm10.36) & \frac{12.5(43.42\pm10.36)}{52} & \frac{12.5(43.42\pm10.36)}{52} \\ \hline 8(14.45\pm10.36) & \frac{12.5(43.42\pm10.36)}{52} \\ \hline 8(14.45\pm10.36) & \frac{12.5(43.42\pm10.36)}{52} & 12.5(43.42\pm10.3$	2.5	4	1 1	2	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.1	1	0 2	2	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.9	8	1 (0	1
	2.7	1	1	1	1
$ \hline C. thannodes 160.29 \begin{array}{c} 23(28.68 \pm 3.16) \\ 34.5 \end{array} \begin{array}{c} 19(21.22 \pm 1.67) \\ 25 \end{array} \begin{array}{c} 1.35 \\ 11.5 \end{array} \begin{array}{c} 6(8.24 \pm 1.68) \\ 11.5 \end{array} \begin{array}{c} 21(49.38 \pm 13.34) \\ 79 \end{array} \begin{array}{c} 13(17.70 \pm 4.94) \\ 31 \end{array} $	2.7	8	1 1	2	2
C. wendelboi 178.5 $\frac{20.5(29.32\pm3.15)}{36.4}$ $18.8(24.9\pm3.14)$ 1.17 $7.3(13.91\pm2.19)$ $14(35.07\pm11.80)$ $8(11.93\pm2.64)$ Column1: Species: Column2: Stomata density (n/mm ²): Column 3: Stomata cells length: Column 4: Stomata cells wide: Column 5:	2.9		0		

Column1: Species; Column2: Stomata density (n/mn²); Column 3: Stomata cells length; Column 4: Stomata cells wide; Column 5: Stomata cells length; Column 6: Stomata pore length; Column 7: Epidermal cells length; Column 8: Epidermal cell wide; Column 9: Epidermal cell length/wide ratio; Column 10: Epidermal wall shape (Puzzle shape:0 & Curve shape:1); Column 11: Distinction of epidermal cells (0: Low distinct, 1: Distinct & 2: High Distinct); Column 12: Deep of stomata (0: On surface, 1: Semi depressed & 2: Depressed)

C. tabrisiana, C. seidlitzii and *C. microcephala* of section *Cousinia* and *C. assyriaca, C. gilanica* and *C. thamnodes* of section *Stenocephalae* showed similar morphological characters like: presence of bicolor leaves, the number of head, the density of head trichome, the floret number and length. These results clearly showed difficulties in the taxonomy of the group and a lack of clear-cut separation of the studied species.

analysis morphological PCA of characters revealed that the first three PCA components comprised about 72% of the total variation (Table 4). Morphological characters like trichome cover, present leaves bicolor, head number, head wide, head length/wide ratio, head shape, floret number, and floret length had the highest value of correlation with these components and are the most variable morphological characters among the studied species. The Combination of these characteristics separated *Cousinia* species of the studied sections.

Table 4. PCA Components based on	
1 1 1 1 1 1 1 1 1 1	<hr/>

Morphological data of taxa (ANOVA: P<0.05)			
Morphological Characters	Eigenvalue	%Variance	
Head Number	0.0451	41.595	
Head Length	0.0187	18.121	
Head Width	0.0126	12.313	
Head Length/Width Ratio	0.0078	7.2922	
Involucral Bracts Number	0.0048	4.6782	
Florets Number	0.0038	4.4830	
Florets Length	0.0027	3.058	
Corolla Limb Length	0.00124	1.978	
Corolla Tube Length	0.00110	1.4325	
Limb Length / Tube Length Ratio	0.00079	0.932	

3. 1. Micro-morphometry of leaf

PCA analysis of Micro-morphological characters revealed that the first three PCA components comprised about 86.8% of the total variation (Table 5). PCA plot of species relationship based on leaf micro-morphological character is presented in Figure 4 This plot also separates the species of the studied sections from each other and

is in good agreement with morphological results.

C. chlorocephala differed from the other species of the section *Cousinia* and had a maximum Head length/width ratio and absence of trichome on the stem.

Table 5. PCA Components based on	
Micromorphological data of taxa (ANOVA: P<0.05)	

Micromorphological Characters	Eigenvalue	%Variance
Epidermal Cell Length	0.0183	50.825
Epidermal Cell Width	0.0074	20.781
Epidermal Cell Length/	0.0055	15.259
Width Ratio		
Stomata Length/Width Ratio	0.0035	6.7621
Stomata Length	0.0011	1.6701
Stomata Width	0.0008	1.3732
Epidermal Cell Shape	0.0004	0.9831
Density of Stomata	0.0001	0.4781

This species differed greatly in its micro-morphological characters too by having puzzle-shaped epidermal cell wall (curved shape in other species of this section), the largest stomata pore size, and the longest epidermal cell length.

In both morphological and micromorphological analyses, *C. chlorocephala* was separated from the other species of section *Cousinia*. PCA plot based on combined morphology and leaf micromorphology (Figure 5 and 6) separated *C. chlorocephala* far from other species of the section *Cousinia*.

The presence of characters like head length/ head-to-width ratio, limb/tube of floret ratio, epidermal cell length, and epidermal cell wall shape, bring *C*. *chlorocephala* closer to the species of section *Stenocephalae*.

Section *Stenocephalae* is one of the largest sections of the genus *Cousinia*. Seven species of this section showed affinity to each other and formed a separate cluster based on micro morphological and morphological characters.

Cousinia aggregata, C. alexeenkoana, C. cylindracea, C. glaucopsis, C. lucida, C. manouchehrii, and C. nekarmanica showed similarity in characters: head shape, bracts shape, epidermal wall stomatal cell length and wide (Largest stomata). Moreover, they are different from the other species of the section *Stenocephalae* by characters: head head number, shape, and head length/width ratio (maximum size).

The palynological study also showed that these species differed from the other species of this section (Saber *et al.*, 2009). It seems this species formed a subsection in section *Stenocephalae*. SEM micrograph of abaxial surface of Cousinia leaves species are shown in pictures 1-31.

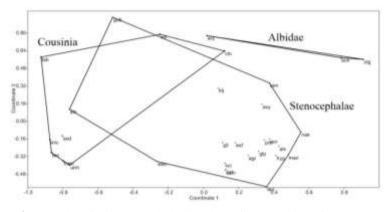


Figure 4. PCA plot of micro-morphological data of three section of Cousinia studied

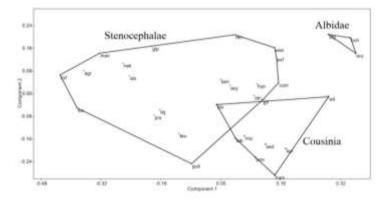
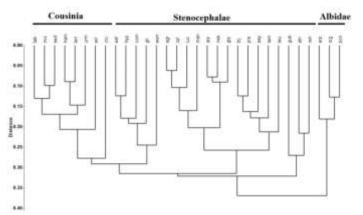
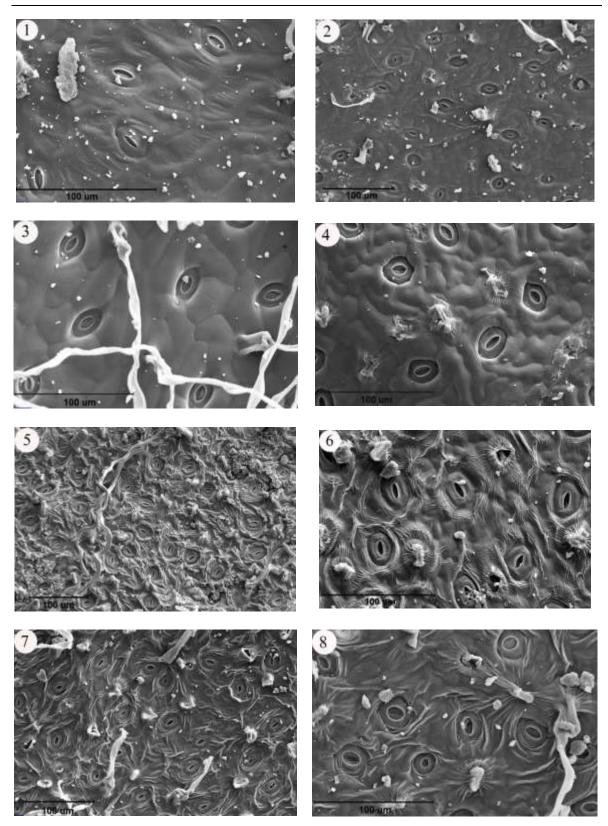
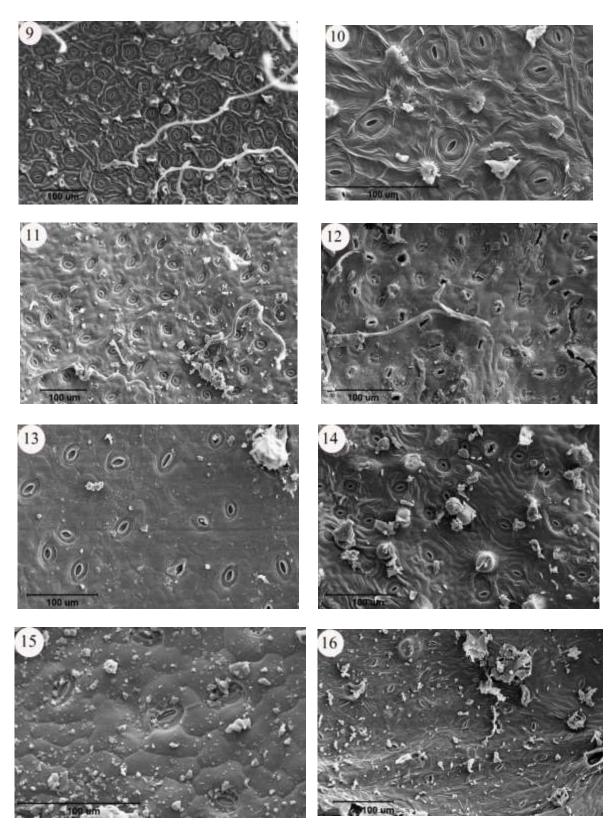
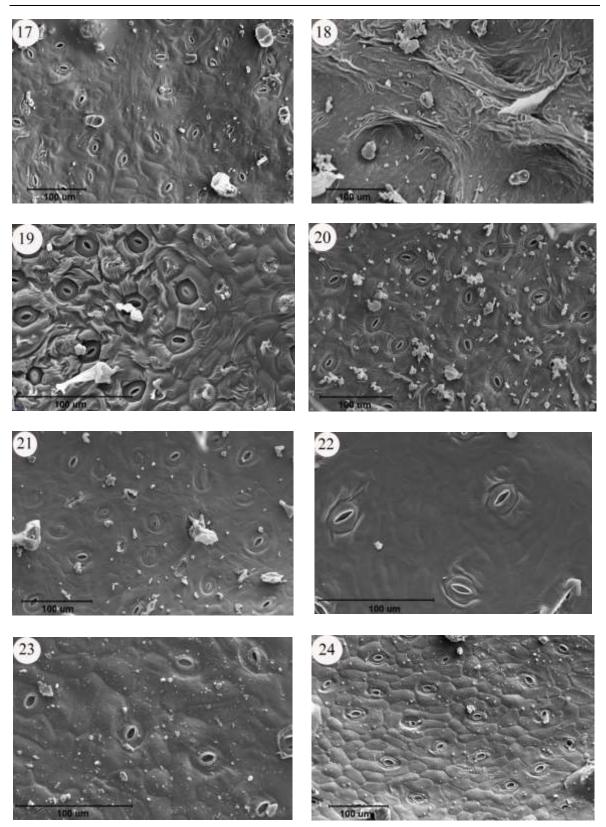


Figure 5. PCA plot of micro-morphological and morphological characters in three sections of Cousinia studied

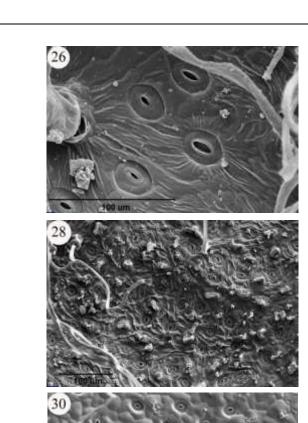



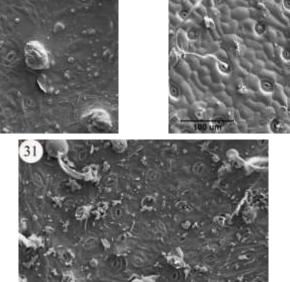

Figure 6. UPGMA tree of micro-morphological and morphological characters in three sections of *Cousinia* studied

40 Minaeifar *et al.*: Investigating the relationship between three sections of Cousinia using macroscopic ...


Pics. 1-8. SEM micrograph of abaxial surface of *Cousinia* leaves species. (1) *C. bachtiarica*, (2) *C. eriorhiza*, (3) *C. oligocephala*, (4) *C. chlorocephala*, (5) *C. hamosa*, (6) *C. microcephala*, (7) *C. seidlitzii*, (8) *C. tabrisiana*. Scale bare = 100 μm

Pics. 9-16. SEM micrograph of abaxial surface of *Cousinia* leaves species. (9) *C. tenuifolia*, (10) *C. urumiensis*, (11) *C. wilhelminae*, (12) *C. aggregata*, (13) *C. alexeenkoana*, (14) *C. assyriaca*, (15) *C. bijarensis*, (16) *C. commutata*. Scale bare = 100 μm


42 Minaeifar *et al.*: Investigating the relationship between three sections of Cousinia using macroscopic ...



Pics. 17-24. SEM micrograph of abaxial surface of *Cousinia* leaves species. (17) *C. cylindracea*, (18) *C. esfandiarii*, (19) *C. gaubae*, (20) *C. gilanica*, (21) *C. glaucopsis*, (22) *C. hypopolia*, (23) *C. lucida*, (24) *C. manouchehrii*. Scale bare = 100 μm

25

20

Pics. 25-31. SEM micrograph of abaxial surface of *Cousinia* leaves species. (25) *C. nekarmanica*, (26) *C. prasina*, (27) *C. renominata*, (28) *C. stenocephalae*, (29) *C. tenuiramula*, (30) *C. thamnodes*, (31) *C. wendelboi*. Scale bare = 100 μm

4. Conclusion

The current study demonstrates that employing both micro-morphological and morphological characters for analysis yields a more accurate representation of species relationships compared to relying solely on morphological data analysis. The findings suggest that, based on the results indicating species relationships using the complete set of characteristics within this taxon, there is a need for revisiting the classification. Moreover, to enhance the level of certainty, further molecular studies in this field are required.

Declaration of competing interest

No potential conflict of interest was reported by the authors.

Data Availability

Data will be made available on request.

References

- Adedeji, O., & Jewoola, O.A. (2008). Importance of leaf epidermal characters in the Asteraceae family. Not. Bot. Hort. Agrobot. Cluj, 36 (2), 7-16.
- Attar, F. (2011). A taxonomic revision of *Cousinia* Cass., sect. Albidae Bunge (Asteraceae) in flora of Iran. *Iranian Journal of Botany*, 17 (2), 150-157.
- Chen, J., Sun, H., & Yang, Y. (2008). Comparative morphology of leaf epidermis of Salix (Salicaceae) with special emphasis on sections Lindleyanae and Retusae. *Botanical Journal of the Linnean Society*, 157, 311-322.
- Djamali, M., Baumel, A., Brewer, S., Jackson, S.T., Kadereit, J. W., López – Vinyallonga, S., Mehregan, I., Shabanian, E., & Simakova, A. (2012). Ecological implications of Cousinia Cass. (Asteraceae). persistence through the last two glacial-interglacial cycles in the continental Middle East for the Irano-Turanian flora. Elsevier. Review of Palaeobotany and Palynology, 172, 10-20.
- Djavadi, S.B. 2012. NEW chromosome counts in *Cousinia* (Asteraceae, Cardueae) sections Cynaroideae anf Stenocephalaeae from Iran. - Iranian Journal of Botany. 18(1): 86-93.
- Frodin, D.G. 2004. History and concepts of big plant genera. Taxon 53 (3): 753-776.
- Ganeva, T., & Uzunova, K. (2010). Comparative leaf epidermis study in species of genus *Malus* Mill. (Rosaceae). *Botanica Serbica*, 34 (1), 45-49.
- Ghahreman, A., & Attar, F. (1999). Biodiversity of plant species in Iran, vol. 1. Tehran Univ. Press.
- Ghahremaninejad, F., Khalili, Z., Maassoumi, A., Mirzaie, H., & Riahi, M. (2012). Leaf epidermal features of *Salix* species (Salicaceae) and their systematic significance. *American Journal of Botany*, 99(4), 769-777.

- Knapp, H.D. (1987). On the distribution of genus *Cousinia* (Compositae). *Plant Systematic and Evolution*, 155, 15-25.
- López-Vinyallonga, S., Susanna, A., & Garcia-Jacas, N. (2010). Chromosome counts in the genera *Cousinia*, *Olgaea* and *Syreitschikovia* (Compositae). *Folia Geobotanica*, 45, 201-214.
- Podani, J. (2000). Introduction to the Exploration of Multivariate Data English translation, Backhuyes publisher, Leide, 407pp.
- Rechinger, K.H. (1986). *Cousinia:* morphology, taxonomy, distribution and phytogeographical implication. Proceedings of the Royal Society. Edinburgh. Section B. Biological Sciences. 89:, 45-58.
- Saber, A., Attar, F., & Djavadi, S.B. (2009). Studies of pollen grains in the Sect. Stenocephalae (Cousinia Cass.-Asteraceae) in Iran. *Iranian Journal of Botany*, 15 (1), 114-128.
- Sheidai, M., Mehdigholi, K., Ghahreman, A., & Attar, F. (2006). Cytogenetic study of the genus *Cousinia* (Asteraceae, section Serratuloideae) in Iran. *Genetic and Molecular Biology*, 29, 117-121.
- Susanna, A., & Garcia-Jacas, N. (2007). Tribe Cardueae Cass. (1819) in: Kadereit, J. W. & Jeffrey, C. (volume ed.), The Families and Genera of Vascular Plants. *Berlin, Heidelberg: Springer Verlag*, 8, 123-147.
- Susanna, A., Garcia-Jacas, N., Vilatersana, R., Garnatje, T., Vallès, J., & Ghaffari, S.M. 2003. New chromosome counts in the genus *Cousinia* and the related genus Schmalhausenia (Asteraceae, Cardueae). *Botanical Journal of the Linnean Society*, 143, 411-418.
- Taher, S., & Rajput, M. (2009). S.E.M. structure distribution and taxonomic significance of foliar stomata in *Sibbaldia* L. species (Rosaceae). *Pakistan Journal of Botany*, 41(5), 2137-2143.
- Tscherneva, O.V. (1962). *Cousinia* Cass.Pp.108-357 in: shishkin, B.K. (ed.), Flora of the USSR, Vol. 27. Leningrad: Akademiya Nauk.
- Wissemann, V. (2000). Epicuticular wax morphology and the taxonomy of *Rosa* (section Caninae, subsection Rubiginosae). *Plant Systematic and Evolution*,221,107-112.