In collaboration with Payame Noor University and Iranian Biology Society

Document Type : Original Article

Authors

Department of Biology, Payam ‎Noor University, Tehran, Iran‎

Abstract

Background: This study aimed to investigate the effect of docetaxel on the expression level of mitochondria- related genes including mitochondrial transcription A (TFAM) and mitochondrial-encoded cytochrome c oxidase subunit 1 (MT-COX 1) in mouse MII oocytes following vitrification by cryotop.
Methods: Oocytes were selected by simple random sampling and distributed amongst five experimental groups (control (n=126), docetaxel (n=132), docetaxel + cryoprotectant agent (CPA) (n=134), docetaxel+ Vitrification (n=132), and vitrification (n=123)).  In this experimental study, the survival and fertilization of methaphase II (MII) mouse oocytes were assessed after vitrification by cryotop. In the second experiment, the effects of docetaxel on the expression of TFAM and COX1 genes were determined in vitrified-warmed oocytes by real-time RT-PCR. Each experimental group was compared with the control group.
Results: The results showed a significant reduction in the survival rate of each group in comparison with the controls (P<0.05). The survival rate was significantly lower in both vitrification groups (Docetaxel+ vitrification, vitrification) than in non-vitrification groups (fresh control and Docetaxel) (P<0.05). The survival rate of vitrified/warmed oocytes was significantly higher in the Docetaxel+ vitrification group compared with the vitrification group (P=0.005). There were significant differences in the fertilization rate between the docetaxel group with the other groups (P<0.05). There were significant differences between the expression level of Cox1 gene in the control group with docetaxel and vitrification groups (P<0.05). the results showed that the expression level of COX1, TFAM genes was significantly high in CPA, vitrification group (P<0.05) and pretreatment of oocytes with docetaxel can decrease the expression level of cox1, TFAM genes in the vitrified group (vitrification) and non-vitrified group (CPA) (P<0.05).




Conclusions: This study indicates that vitrification of mouse MII oocytes can lead to an increase in mitochondrial gene expressions (specifically TFAM and COX1). However, the pretreatment of oocytes with docetaxel is observed to result in a decrease in mitochondrial gene expression.

Keywords

Main Subjects

Almasi, T.S., Rouzbehi, A., Aliabadi, E., Haeri, A., Sadeghi, Y., & Hosseini, A. (2009). Developmental consequences of mouse cryotop-vitrified oocyte and embryo using low concentrated cryoprotectants.
Amidi, F., Khodabandeh, Z., & Mogahi, M. H. N. (2018). Comparison of the effects of vitrification on gene expression of mature mouse oocytes using cryotop and open pulled straw. International Journal of Fertility & Sterility12(1), 61.
Bartolac, L.K., Lowe, J.L., Koustas, G., Grupen, C.G., & Sjöblom, C. (2018). Vitrification, not cryoprotectant exposure, alters the expression of developmentally important genes in in vitro produced porcine blastocysts. Cryobiology, 80, 70-76.  https://doi.org/10.1016/j.cryobiol.2017.12.001
Chasombat, J., Nagai, T., Parnpai, R., & Vongpralub, T. (2015). Pretreatment of in vitro matured bovine oocytes with docetaxel before vitrification: Effects on cytoskeleton integrity and developmental ability after warming. Cryobiology, 71(2), 216-223. https://doi.org/10.1016/j.cryobiol.2015.07.002
Ciotti, P.M., Porcu, E., Notarangelo, L., Magrini, O., Bazzocchi, A., & Venturoli, S. (2009). Meiotic spindle recovery is faster in vitrification of human oocytes compared to slow freezing. Fertility and Sterility, 91(6), 2399-2407. https://doi.org/10.1016/j.fertnstert.2008.03.013
De Munck, N., Petrussa, L., Verheyen, G., Staessen, C., Vandeskelde, Y., Sterckx, J., ... & Van de Velde, H. (2015). Chromosomal meiotic segregation, embryonic developmental kinetics and DNA (hydroxy) methylation analysis consolidate the safety of human oocyte vitrification. MHR: Basic science of reproductive medicine21(6), 535-544.
De Munck, N., Petrussa, L., Verheyen, G., Staessen, C., Vandeskelde, Y., Sterckx, J., ... & Van de Velde, H. (2015). Chromosomal meiotic segregation, embryonic developmental kinetics and DNA (hydroxy) methylation analysis consolidate the safety of human oocyte vitrification. MHR: Basic science of reproductive medicine21(6), 535-544.
Dehghani, N., Dianatpour, M., Hosseini, S. E., Khodabandeh, Z., & Daneshpazhouh, H. (2019). Overexpression of mitochondrial genes (mitochondrial transcription factor A and cytochrome c oxidase subunit 1) in mouse metaphase II oocytes following vitrification via cryotop. Iranian Journal of Medical Sciences44(5), 406.
Dhali, A., Anchamparuthy, V. M., Butler, S.P., Pearson, R.E., Mullarky, I.K., & Gwazdauskas, F.C. (2009). Effect of droplet vitrification on development competence, actin cytoskeletal integrity and gene expression in in vitro cultured mouse embryos. Theriogenology71(9), 1408-1416.  https://doi.org/10.1016/j.theriogenology.2009.01.011
Diaz, J.F., & Andreu, J.M. (1993). Assembly of purified GDP-tubulin into microtubules induced by taxol and taxotere: reversibility, ligand stoichiometry, and competition. Biochemistry32(11), 2747-2755.
El Shourbagy, S.H., Spikings, E.C., Freitas, M., & St John, J.C. (2006). Mitochondria directly influence fertilisation outcome in the pig. Reproduction131(2), 233-245.
Falkenberg, M., Larsson, N. G., & Gustafsson, C.M. (2007). DNA replication and transcription in mammalian mitochondria. Annu. Rev. Biochem.76, 679-699.
Fernández-Silva, P., Enriquez, J.A., & Montoya, J. (2003). Replication and transcription of mammalian mitochondrial DNA. Experimental physiology, 88(1), 41-56.
Huang, J. Y., Chen, H. Y., Park, J. Y. S., Tan, S. L., & Chian, R. C. (2008). Comparison of spindle and chromosome configuration in in vitro-and in vivo-matured mouse oocytes after vitrification. Fertility and Sterility90(4), 1424-1432.
Jiménez‐Trigos, E., Naturil‐Alfonso, C., Vicente, J.S., & Marco‐Jiménez, F. (2013). Post‐Warming Competence of In Vivo Matured Rabbit Oocytes Treated with Cytoskeletal Stabilization (Taxol) and Cytoskeletal Relaxant (Cytochalasin B) Before Vitrification. Reproduction in Domestic Animals, 48(1), 15-19. https://doi.org/10.1111/j.1439-0531.2012.02018.x
Jiménez‐Trigos, E., Naturil‐Alfonso, C., Vicente, J.S., & Marco‐Jiménez, F. (2012). Effects of cryopreservation on the meiotic spindle, cortical granule distribution and development of rabbit oocytes. Reproduction in domestic animals, 47(3), 472-478. https://doi.org/10.1111/j.1439-0531.2011.01906.x
Khodabandeh, J.Z., Amidi, F., Nouri, M.S., Sobhani, A., Mehranian, K.M., ABBASI, M., ... & Ebrahimi, M. (2010). Expression of heat shock protein (HSP A1A) and MnSOD genes following vitrification of mouse MII oocytes with cryotop method.
Khodabandeh, J.Z., Amidi, F., NOURI, M. S., Sobhani, A., Mehranian, K.M., Abbasi, M., ... & Ebrahimi, M. (2010). Expression of heat shock protein (HSP A1A) and MnSOD genes following vitrification of mouse MII oocytes with cryotop method.
Kuwayama, M. (2007). Highly efficient vitrification for cryopreservation of human oocytes and embryos: the Cryotop method. Theriogenology, 67(1), 73-80. https://doi.org/10.1016/j.theriogenology.2006.09.014
Kuwayama, M. (2007). Oocyte cryopreservation. Journal of Mammalian Ova Research24(1), 2-7.
Montoya, J., López-Pérez, M.J., & Ruiz-Pesini, E. (2006). Mitochondrial DNA transcription and diseases: past, present and future. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1757(9-10), 1179-1189. https://doi.org/10.1016/j.bbabio.2006.03.023
Morató, R., Izquierdo, D., Albarracín, J.L., Anguita, B., Palomo, M.J., Jiménez‐Macedo, A.R., ... & Mogas, T. (2008). Effects of pre‐treating in vitro‐matured bovine oocytes with the cytoskeleton stabilizing agent taxol prior to vitrification. Molecular Reproduction and Development: Incorporating Gamete Research, 75(1), 191-201. https://doi.org/10.1002/mrd.20725
Morató, R., Izquierdo, D., Paramio, M.T., & Mogas, T. (2008). Cryotops versus open-pulled straws (OPS) as carriers for the cryopreservation of bovine oocytes: effects on spindle and chromosome configuration and embryo development. Cryobiology, 57(2), 137-141. https://doi.org/10.1016/j.cryobiol.2008.07.003
Novin, M. G., Noruzinia, M., Allahveisi, A., Saremi, A., Fathabadi, F.F., Farahani, R. M., ... & Yousefian, E. (2015). Comparison of mitochondrial-related transcriptional levels of TFAM, NRF1 and MT-CO1 genes in single human oocytes at various stages of the oocyte maturation. Iranian biomedical journal19(1), 23.
Roozbehi, A. (2013). Mouse oocytes and embryos cryotop-vitrification using low concentrated solutions: Effects on meiotic spindle, genetic material array and developmental ability. Iranian journal of basic medical sciences16(4), 590.
Scarpulla, R.C. (2002). Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells. Gene286(1), 81-89. https://doi.org/10.1016/S0378-1119(01)00809-5
Sripunya, N., Somfai, T., Inaba, Y., Nagai, T., Imai, K., & Parnpai, R. (2010). A comparison of cryotop and solid surface vitrification methods for the cryopreservation of in vitro matured bovine oocytes. Journal of Reproduction and Development56(1), 176-181.
Vincent, C., Pickering, S.J., Johnson, M.H., & Quick, S.J. (1990). Dimethylsulphoxide affects the organisation of microfilaments in the mouse oocyte. Molecular Reproduction and Development, 26(3), 227-235. https://doi.org/10.1002/mrd.1080260306
Wang, L.Y., Wang, D.H., Zou, X.Y., & Xu, C.M. (2009). Mitochondrial functions on oocytes and preimplantation embryos. Journal of Zhejiang University Science B, 10(7), 483-492. https://doi.org/10.1631/jzus.B0820379
Xiao, H., Verdier-Pinard, P., Fernandez-Fuentes, N., Burd, B., Angeletti, R., Fiser, A., ... & Orr, G. A. (2006). Insights into the mechanism of microtubule stabilization by Taxol. Proceedings of the National Academy of Sciences103(27), 10166-10173. https://doi.org/10.1073/pnas.0603704103
Yoon, T.K., Kim, T.J., Park, S.E., Hong, S. W., Ko, J.J., Chung, H.M., & Cha, K.Y. (2003). Live births after vitrification of oocytes in a stimulated in vitro fertilization–embryo transfer program. Fertility and sterility79(6), 1323-1326. https://doi.org/10.1016/S0015-0282(03)00258-9
Zhou, C.J., Wang, D.H., Niu, X.X., Kong, X.W., Li, Y.J., Ren, J., ... & Liang, C.G. (2016). High survival of mouse oocytes using an optimized vitrification protocol. Scientific reports6(1), 19465.